IMT-Advanced (4G) Submission and Evaluation Process

News from the ITU (International Telecommunication Union) on 4G, aka IMT-Advanced: In a recent meeting it was decided that technology has now moved sufficiently beyond enhanced 3G systems (such as UMTS HSPA, WiMAX, CDMA1xEvDo also called ‘enhanced IMT-2000 systems’ in ITU terms) that the selection process of suitable technologies for 4G can now begin. In a paper, the ITU describes the steps that will now follow and the time frame they see for the process:

  • 2008 – beginning of 2009: Companies can submit proposal for candidate technologies. I guess 3GPP’s LTE Advanced and IEEE’s WiMAX 802.16m are hot candidates. Let’s see who else will come up with something.
  • Up to 2010: Evaluation of the proposed technologies
  • Mid-2010: Decision will be made which systems will get the IMT-Advanced stamp

A further interesting note is that the new documents now published by the ITU do not specify any new technical details concerning the properties of future 4G systems. Instead, they just reference ITU-R M.1465, which has been around for some time now, which calls for data rates of 100 MBit/s while moving and 1 GBit/s while stationary.

Via LTE Watch

A WiMAX 802.16m Primer – Complying with IMT-Advanced

Like LTE, WiMAX is also competing for a place in IMT-Advanced 4G and shares the same fate as the current LTE standard: It is too slow. As a result, the 802.16m working group has been tasked by the IEEE to enhance the system. While only few details were available so far, the working group has published a very early draft version of the 802.16m System Description Document (SSD). Thanks to Robert Syputa of WiMAX Pro for the tip.

While there are still many gaps in the document, the main features are already described. Here's a short overview with some further background information:

Use of Several Carriers

Like other standards bodies, the IEEE has recognized that increasing the bandwidth used for data transmission is one of the best ways to increase overall data transfer rates. A multi-carrier approach, in which two or even more carriers, which are not necessarily in adjacent bands, are used for transferring data, will be used by the future WiMAX air interface. The approach used by WiMAX is backwards compatible, i.e. 802.16e and 802.16m mobile devices can be served by the same base station on the same carrier. The 802.16e device, however, does not see the channel bundling and continues to use only one carrier. To be backwards compatible, high speed zones are introduced in a frame, which are only available for 802.16m devices. If the carriers used for transmission are adjacent, guard bands that are normally in place to separate the carriers can be used for transferring data.

Self Organization and Inter Base Station Coordination

Interference from neighboring base stations and mobile devices is undesired in wireless systems, as it reduces the overall system throughput. The new version of the standard introduces methods and procedures to request mobile devices to perform interference measurements at their location and send them back to the base station. The base station can then use information gathered from different devices to adjust its power settings and potentially also to organize themselves with neighboring base stations using the same frequency.

New Frame Structure

In practice, it has been observed that the 802.16e frame structure, with frame lengths of up to 20 milliseconds is too inflexible. The downside of such long frames is a slow network access and a slow repetition of faulty data blocks, as devices only have one transmission opportunity per frame. 802.16m uses a new frame structure which consists of super-frames (20 ms) which are further divided into frames (5 ms) and again divided into eight sub-frames (0.617 ms). Within each frame of 5 milliseconds, the transmission direction can be changed once. Since eight sub-frames fit into a frame, downlink uplink time allocations of 6/2, 5/3, etc. can be achieved. By switching the transmission direction at least every 5 milliseconds, [34] foresees that HARQ retransmission delays are cut by ¾, the idle to active state transmission time is reduced from above 400 milliseconds down to less than 100 milliseconds and the one way access delay is reduced from almost 20 milliseconds down to less than 5 milliseconds.


What I haven't seen in the SSD so far is to go beyond 2×2 MIMO to further increase data rates. That's a bit strange since LTE is already at this point!? For the moment, I don't see anything that would push the data rates by an order of a magnitude, which I think would be necessary to comply with IMT-Advanced. Unless, however, the ITU is thinking about downgrading their requirements. Thoughts, anyone?

If WiMAX Becomes a 3G (IMT-2000) Standard, What’s Left for 4G?

Now that 3G systems such as UMTS are under full deployment, the industry is looking forward to what comes next. While some say that WiMAX is a 4G system, the IEEE and the WiMAX forum think that 802.16e is rather a 3G technology and have asked the ITU (International Telecommunication Union) to include this standard into its IMT-2000 specification (International Mobile Telecommunications 2000). This specification is generally accepted as being the umbrella defining which standards are to be considered 3G.

This is mainly a political move since in many regions of the world, frequencies are reserved for 3G IMT-2000 systems. If WiMAX were included in IMT-2000, and it looks like it will be in the near future, some frequency bands such as the 2.5 GHz IMT-2000 extension band in Europe could be used for WiMAX without changing policies.

So what remains for IMT-Advanced, the ITU umbrella name for future 4G technologies?

Currently there is still no no clear definition by ITU of the characteristics of future 4G IMT-Advanced systems. The ITU-R M.1645 recommendation gives first hints but leaves the door wide open:

It is predicted that potential new radio interface(s) will need to support data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access, by around the year 2010 […]
These data rate figures and the relationship to the degree of mobility (Fig. 2) should be seen as targets for research and investigation of the basic technologies necessary to implement the framework. Future system specifications and designs will be based on the results of the research and investigations.

When WiMAX is compared to the potential requirements above it’s quite clear that the current 802.16e standard would not qualify as a 4G IMT-Advanced standard since data rates even under ideal conditions are much lower.

3GPP’s Long Term Evolution (LTE) project will also have difficulties fulfilling these requirements. Even with the recently proposed 4×4 MIMO, data rates in a 20 MHz carrier would not exceed 326 MBit/s. And that’s already a long stretch since putting 4 antennas in a small device or on a rooftop will be far from simple in practice. If WiMAX is accepted as a 3G IMT-2000 technology, how can LTE with a similar performance be accepted as a 4G IMT-Advanced technology?

Additionally, one should also not forget that IMT-2000 systems such as UMTS are still evolving. UMTS is a good example. With HSDPA and HSUPA, user speeds now exceed the 2 MBit/s which were initially foreseen for IMT-2000 systems. But development hasn’t stopped here. Recent new developments in 3GPP Release 7 and 8 called HSPA+, which will include MIMO technology and other enhancements, will bring the evolved UMTS technology to the same capacity levels as what is currently predicted for LTE on a 5 MHz carrier. HSPA+ is clearly not a 4G IMT-Advanced system since it enhances a current 3G IMT-2000 radio technology. Thus, HSPA+ categorized as a ‘enhanced IMT-2000 system’.

Maybe that’s the reason why the IEEE 802.16 working group is already looking forward and has started work on 802.16m with the stated goal of reaching top speeds of 1 GBit/s.

When looking at current research it’s clear that the transmission speed requirements described in ITU-R M.1645 can only be achieved in a frequency band of 100+ MHz. This is quite a challenge since such large bands are few. Thus, I have my doubts whether these requirements will remain in place for the final definition of 4G IMT-Advanced.

Does It Really Matter If A Technology Is 3.5G, 3.9G or 4G?

While discussions are ongoing the best one can do is to look at HSPA+, WiMAX, LTE and other future developments as "Beyond 3G" systems. After all, from a user point of view it doesn’t  matter if a technology is IMT-2000, Enhanced IMT-2000 or IMT-Advanced as long as data rate, coverage and other attributes of the network can keep up with the growing data traffic.

A whitepaper produced by 3G Americas has some further thoughts on the topic.

As always, comments are welcome!

WiMAX II – 802.16m – Chasing the Ghost

Looking at presentations from a recent LTE meeting I found it quite interesting at how many of them mention WiMAX 802.16m. I haven’t heard much about 802.16m yet but since they all refer to it I thought it might be time to find out a bit more about it.

It seems to be a bit early for that search however. First announced in early 2007 the only facts so far known about 802.16m is that the IEEE would like to create a standard as much backwards compatible as possible to the current version of the WiMAX (802.16e or 820.16-2005) but with peak data rates of up to 1 GBit/s (that’s around 1.000 MBit/s).

Compared to current systems deployed in live networks today such as HSDPA with a theoretical top speed of 14 MBit/s and about 2 MBit/s with a Cat-6 HSDPA mobile today in live networks, these numbers are staggeringly impressive. So how can such data rates be achieved? As not much is known so far, let’s speculate a bit.

Between today and WiMAX II, there’s systems such as WiMAX and LTE which promise faster data rates than those available today by mainly doing the following:

  • Increase the channel bandwidth: HSDPA uses a 5 MHz channel today. WiMAX and LTE have flexible channel bandwidths from 1.25 to 20 MHz (Note: The fastest WiMAX profile currently only uses a 10 MHz channel today for the simple reason that 20 MHz of spectrum is hard to come by). So by using a channel that is four times as broad as today, data rates can be increased four times.
  • Multiple Input, Multiple Output (MIMO): Here, multiple antennas at both the transmitting and receiving end are used to send independent data streams over each antenna. This is possible as signals bounce of buildings, trees and other obstacles and thus form independent data paths. Both LTE and WiMAX currently foresee 2 transmitting and 2 receiving antennas (2×2 Mimo). In the best case this doubles data rates.
  • Higher Order Modulation: While HSDPA uses 16QAM modulation that packs 4 bits into a single transmission step, WiMAX and LTE will use 64QAM modulation under ideal transmission conditions which packs 6 bits into a single transmission step.

By using the techniques above, LTE and WIMAX will be able to increase today’s 2 MBit/s to about 20-25 MBit/s. That’s still far away from the envisaged 1.000 GBit/s. To see how to get there let’s take a look at what NTT DoCoMo is doing in their research labs, as they have already achieved 5 GBit/s on the air interface and have been a bit more open at what they are doing (see here and especially here):

  • Again increase of the channel bandwidth: They use a 100 MHz channel for their system. That’s 4 times wider than the biggest channel bandwidth foreseen for LTE and 20 times wider than used for today’s HSDPA. Note that in practice it might be quite difficult to find such large channels in the already congested radio bands.
  • 12×12 MIMO: Instead of 2 transmit and receive antennas, DoCoMo uses 12 for their experiments. Current designers of mobile devices already have a lot of trouble finding space for 2 antennas so a 12×12 system should be a bit tricky to put into small devices.
  • A new modulation scheme: VSF spread OFDM. This one’s a bit mind bogelling using CDMA and OFDM in combination. Wikipedia contains a description of something called VSF-OFCDM which might be a close brother.

A four times wider bandwidth with six times the number of antennas results in a speed increase factor of 24. So multiplying 25 MBit/s * 24 results in 600 MBit/s or 0.6 GBit/s. That’s still a factor of 8 away from what DoCoMo has said they have achieved, so I wonder where that discrepancy comes from!? I guess only time will tell.


For the moment, the wireless world’s pretty much occupied with making LTE and WiMAX a reality. Pushing beyond that is not going to be an easy thing to do in the real world as bands that allow a single carrier of  100 MHz will be even harder to find than for the 20 MHz envisaged for LTE. Also, cramming more than 2 antennas into a small device will also be a formidable challenge.

More about 4G, LTE and WiMAX can be found here.